Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 871
Filtrar
2.
Exp Appl Acarol ; 92(2): 241-252, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38321309

RESUMO

Tick-borne relapsing fever spirochetes of genus Borrelia thrive in enzootic cycles involving Ornithodoros spp. (Argasidae) mainly, and rodents. The isolation of these spirochetes usually involves a murine model in which ticks are fed and the spirochetes detected in blood several days later. Such an experiment also demonstrates that a given species of tick is competent in the transmission of the bacteria. Here, soft ticks Ornithodoros octodontus were collected in Northern Chile with the objective to experimentally determine its capacity to transmit a Borrelia sp. detected in a previous study. Two Guinea pigs (Cavia porcellus) were used to feed nymphs and adults of O. octodontus and the spirochetes in blood were inspected by dark-field microscopy and nested PCR. Although spirochetes were not seen in blood, DNA was detected in only one animal 11 days after the ticks were fed. Genetic sequences of Borrelia flaB, clpX, pepX, recG, rplB, and uvrA genes retrieved from DNA extraction of positive blood were employed to construct two phylogenetic analyses. On the one hand, the flaB tree showed the Borrelia sp. transmitted by O. octodontus clustering with Borrelia sp. Alcohuaz, which was previously detected in that same tick species. On the other hand, concatenated clpX-pepX-recG-rplB-uvrA demonstrated that the characterized spirochete branches together with "Candidatus Borrelia caatinga", a recently discovered species from Brazil. Based on the genetic profile presented in this study, the name "Candidatus Borrelia octodonta" is proposed for the species transmitted by O. octodontus. The fact that spirochetes were not observed in blood of guinea pigs, may reflect the occurrence of low spirochetemia, which could be explained because the susceptibility of infection varies depending on the rodent species that is used in experimental models. Although the vertebrate reservoir of "Ca. Borrelia octodonta" is still unknown, Octodon degus, a rodent species that is commonly parasitized by O. octodontus, should be a future target to elucidate this issue.


Assuntos
Argasidae , Borrelia , Besouros , Ornithodoros , Febre Recorrente , Doenças dos Roedores , Animais , Cobaias , Camundongos , Ornithodoros/genética , Febre Recorrente/veterinária , Febre Recorrente/epidemiologia , Febre Recorrente/microbiologia , Chile , Filogenia , Roedores , DNA
3.
Ticks Tick Borne Dis ; 15(3): 102324, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367587

RESUMO

A Borrelia miyamotoi gene with partial homology to bipA of relapsing fever spirochetes Borrelia hermsii and Borrelia turicatae was identified by a GenBank basic alignment search analysis. We hypothesized that this gene product may be an immunogenic antigen as described for other relapsing fever Borrelia (RFB) and could serve as a serological marker for B. miyamotoi infections. The B. miyamotoi gene was a truncated version about half the size of the B. hermsii and B. turicatae bipA with a coding sequence of 894 base pairs. The gene product had a calculated molecular size of 32.7 kDa (including the signal peptide). Amino acid alignments with B. hermsii and B. turicatae BipA proteins and with other B. miyamotoi isolates showed conservation at the carboxyl end. We cloned the B. miyamotoi bipA-like gene (herein named bipM) and generated recombinant protein for serological characterization and for antiserum production. Protease protection analysis demonstrated that BipM was surface exposed. Serologic analyses using anti-B. miyamotoi serum samples from tick bite-infected and needle inoculated mice showed 94 % positivity against BipM. The 4 BipM negative serum samples were blotted against another B. miyamotoi antigen, BmaA, and two of them were seropositive resulting in 97 % positivity with both antigens. Serum samples from B. burgdorferi sensu stricto (s.s.)-infected mice were non-reactive against rBipM by immunoblot. Serum samples from Lyme disease patients were also serologically negative against BipM except for 1 sample which may have indicated a possible co-infection. A recently published study demonstrated that B. miyamotoi BipM was non-reactive against serum samples from B. hermsii, Borrelia parkeri, and B. turicatae infected animals. These results show that BipM has potential for a B. miyamotoi-infection specific and sensitive serodiagnostic to differentiate between Lyme disease and various RFB infections.


Assuntos
Infecções por Borrelia , Borrelia , Doença de Lyme , Febre Recorrente , Humanos , Animais , Camundongos , Febre Recorrente/diagnóstico , Doença de Lyme/diagnóstico , Infecções por Borrelia/diagnóstico , Antígenos
4.
Curr Opin Pediatr ; 36(2): 156-163, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38167816

RESUMO

PURPOSE OF REVIEW: Because both incidence and awareness of tick-borne infections is increasing, review of major infections and recent advances related to their diagnosis and management is important. RECENT FINDINGS: A new algorithm, termed modified two-tier testing, for testing for antibodies to Borrelia burgdorferi , the cause of Lyme disease, has been approved and may replace traditional two-tier testing. In addition, doxycycline is now acceptable to use for treatment of and/or prophylaxis for Lyme disease for up to 21 days in children of any age. Borrelia miyamotoi , a bacterium in the relapsing fever type of Borrelia, is the first of this type of Borrelia that is transmitted by hard-bodied ticks such as Ixodes scapularis. SUMMARY: Awareness of these infections and advances in their diagnosis and treatment is important to assure the best outcomes for affected patients. Table 1 contains a summary of infections discussed.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Febre Recorrente , Doenças Transmitidas por Carrapatos , Criança , Humanos , Doenças Transmitidas por Carrapatos/diagnóstico , Doenças Transmitidas por Carrapatos/tratamento farmacológico , Doenças Transmitidas por Carrapatos/epidemiologia , Doença de Lyme/diagnóstico , Doença de Lyme/tratamento farmacológico , Doença de Lyme/epidemiologia , Febre Recorrente/diagnóstico , Febre Recorrente/tratamento farmacológico , Febre Recorrente/epidemiologia , América do Norte
5.
Emerg Infect Dis ; 30(2): 380-383, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270112

RESUMO

We conducted surveillance studies in Sinaloa, Mexico, to determine the circulation of tick-borne relapsing fever spirochetes. We collected argasid ticks from a home in the village of Camayeca and isolated spirochetes. Genomic analysis indicated that Borrelia turicatae infection is a threat to those living in resource-limited settings.


Assuntos
Infecções por Borrelia , Borrelia , Febre Recorrente , Carrapatos , Animais , México/epidemiologia , Borrelia/genética , Febre Recorrente/epidemiologia , Infecções por Borrelia/epidemiologia
6.
Parasit Vectors ; 16(1): 448, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049822

RESUMO

BACKGROUND: The genus Borrelia comprises pathogenic species of bacteria that pose a significant risk to public health. Borrelia spp. are emerging or reemerging infectious agents worldwide with complex transmission cycles, and many species use rodents as vertebrate reservoir hosts. Spirochetes morphologically compatible with Borrelia have been recurrently observed in opossums; however, there is currently a lack of genetic evidence confirming infection or supporting that these marsupials are hosts of Borrelia spirochetes. METHODS: During 2017, 53 serum samples of Didelphis marsupialis from the municipality of Colosó (department of Sucre, Colombia) were collected and allocated in a serum bank. DNA extracted from the serum samples was submitted to a Borrelia genus-specific real-time PCR targeting the 16S rRNA gene. Positive samples were subsequently derived from semi-nested PCR protocols to obtain large fragments of the 16S rRNA and flaB genes. Obtained amplicons were subjected to Sanger sequencing. One positive sample was randomly selected for next-generation sequencing (NGS). Obtained reads were mapped to genomes of Borrelia spp. and sequences of two genes used in a multilocus sequence typing scheme retrieved for taxonomic assignment and phylogenetic analyses. RESULTS: Overall, 18.8% (10/53) of the samples were positive by qPCR. Of them, 80% (8/10) and 60% (6/10) were positive for the 16S rRNA and flaB genes after semi-nested PCRs, respectively. Bioinformatic analysis of one sample sequenced with NGS yielded 22 reads of genus Borrelia with different sizes. Two housekeeping genes, rplB and pyrG, were recovered. Nucleotide pairwise comparisons and phylogenetic analyses of 16S rRNA, flaB, rplB and pyrG genes showed that the Borrelia sp. found in opossums from Colosó corresponded to Borrelia puertoricensis. CONCLUSIONS: We describe the first molecular evidence to our knowledge of B. puertoricensis in Colombia, specifically in opossums, and the first detection of this spirochete in a vertebrate host since its isolation from Ornithodoros puertoricensis in Panama. This detection is also relevant because of the epidemiological importance of opossums as reservoirs of zoonotic diseases to humans.


Assuntos
Borrelia , Didelphis , Febre Recorrente , Animais , Colômbia/epidemiologia , Filogenia , Febre Recorrente/microbiologia , RNA Ribossômico 16S/genética
7.
Zhonghua Liu Xing Bing Xue Za Zhi ; 44(12): 2012-2018, 2023 Dec 10.
Artigo em Chinês | MEDLINE | ID: mdl-38129162

RESUMO

Relapsing fever, caused by Borreliae of the relapsing fever groups, is an infectious disease, which would cause spirochaetaemia and repeated fever in human. To comprehensively understand the classification and distribution of relapsing fever, as well as correlated factors, this paper summarizes the progress in research of epidemiology of relapsing fever in the world, and suggests prevention and control measures. The disease is heterogenous and can be divided into three groups according to vectors, i.e. tick-borne relapsing fever, louse-borne relapsing fever and the avian relapsing fever. Tick borne relapsing fever can be further divided into two types: soft tick transmission and hard tick transmission. Soft tick-borne relapsing fever generally has obvious geographical distribution characteristics, while hard tick-borne relapsing fever is widely distributed all over the world. Louse-borne relapsing fever, also known as epidemic forms of relapsing fever, is caused by body lice, and the incidence is usually associated with war, famine, refugees and poor sanitation. The prevention and control of relapsing fever should be based on local conditions.


Assuntos
Borrelia , Febre Recorrente , Humanos , Febre Recorrente/epidemiologia , Febre Recorrente/prevenção & controle , Febre Recorrente/etiologia
8.
Disaster Med Public Health Prep ; 17: e535, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37985925

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has provided a great lesson for the globe about the necessity and significance of pandemics-related preparedness in all settings. Public health emergency operation centers play critical roles in preparing for and responding to public health events and emergencies by coordinating and pooling resources. In this article, we aimed to share lessons learnt from the public health response to the louse-borne relapsing fever (LBRF) outbreak coordinated by the emergency operation center established to respond to the COVID-19 pandemic in Jimma, Ethiopia.After the major waves of COVID-19 outbreaks in Ethiopia were over, Jimma University Medical Center (JUMC) reported clusters of louse-borne relapsing fever cases from Jimma Main Prison. Accordingly, Jimma Emergency Operation Center (JEOC) established for the COVID-19 pandemic was immediately alerted and effectively coordinated the overall response.As a result, the outbreak was contained within the prison without spreading to the community and the outbreak ended within a shorter period compared to previous LBRF outbreaks in Ethiopia. This indicates the necessity of establishing and sustaining public health emergency operation centers to prepare for and combat potential future public health emergencies.


Assuntos
COVID-19 , Febre Recorrente , Humanos , Febre Recorrente/epidemiologia , Saúde Pública , Etiópia/epidemiologia , Pandemias , Emergências , Surtos de Doenças/prevenção & controle , COVID-19/epidemiologia
9.
Appl Environ Microbiol ; 89(11): e0103223, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37877726

RESUMO

IMPORTANCE: Previous research has implicated Ornithodoros ticks, including Ornithodoros turicata, as long-term reservoirs of relapsing fever (RF) spirochetes. Considering the tick's long lifespan and their efficiency in maintaining and transferring spirochetes within the population, the infection could persist in a given enzootic focus for decades. However, little is known about the relative importance of horizontal and vertical transmission routes in the persistence and evolution of RF Borrelia. Our observations on the reproductive biology of O. turicata in the absence of vertebrate hosts indicate an additional mechanism by which Borrelia turicatae can be maintained in the environment. This work establishes the foundation for studying O. turicata reproduction and spirochete-vector interactions, which will aid in devising control measures for Ornithodoros ticks and RF spirochetes.


Assuntos
Argasidae , Borrelia , Ornithodoros , Febre Recorrente , Animais , Feminino
10.
Parasit Vectors ; 16(1): 317, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670353

RESUMO

BACKGROUND: Borrelia are important disease-causing tick- and louse-borne spirochaetes than can infect a wide variety of vertebrates, including humans and reptiles. Reptile-associated (REP) Borrelia, once considered a peculiarity, are now recognised as a distinct and important evolutionary lineage, and are increasingly being discovered worldwide in association with novel hosts. Numerous novel Borrelia spp. associated with monitor lizards (Varanus spp.) have been recently identified throughout the Indo-Pacific region; however, there is a lack of genomic data on these Borrelia. METHODS: We used metagenomic techniques to sequence almost complete genomes of novel Borrelia spp. from Varanus varius and Varanus giganteus from Australia, and used long- and short-read technologies to sequence the complete genomes of two strains of a novel Borrelia sp. previously isolated from ticks infesting Varanus salvator from Indonesia. We investigated intra- and interspecies genomic diversity, including plasmid diversity and relatedness, among Varanus-associated Borrelia and other available REP Borrelia and, based on 712 whole genome orthologues, produced the most complete phylogenetic analysis, to the best of our knowledge, of REP Borrelia to date. RESULTS: The genomic architecture of Varanus-associated Borrelia spp. is similar to that of Borrelia spp. that cause relapsing fever (RF), and includes a highly conserved megaplasmid and numerous smaller linear and circular plasmids that lack structural consistency between species. Analysis of PF32 and PF57/62 plasmid partitioning genes indicated that REP Borrelia plasmids fall into at least six distinct plasmid families, some of which are related to previously defined Borrelia plasmid families, whereas the others appear to be unique. REP Borrelia contain immunogenic variable major proteins that are homologous to those found in Borrelia spp. that cause RF, although they are limited in copy number and variability and have low sequence identities to RF variable major proteins. Phylogenetic analyses based on single marker genes and 712 single copy orthologs also definitively demonstrated the monophyly of REP Borrelia as a unique lineage. CONCLUSIONS: In this work we present four new genomes from three novel Borrelia, and thus double the number of REP Borrelia genomes publicly available. The genomic characterisation of these Borrelia clearly demonstrates their distinctiveness as species, and we propose the names Borrelia salvatorii, 'Candidatus Borrelia undatumii', and 'Candidatus Borrelia rubricentralis' for them.


Assuntos
Borrelia , Lagartos , Febre Recorrente , Animais , Humanos , Indonésia , Filogenia , Genômica , Austrália
11.
Parasit Vectors ; 16(1): 337, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752595

RESUMO

BACKGROUND: Borrelia persica causes tick-borne relapsing fever in Israel, the eastern Mediterranean basin, and Asia. Relapsing fever is associated with severe illness and potentially death in humans and animals. Since B. persica infection has rarely been described in wild animals, the aim of this study was to evaluate the prevalence of infection with B. persica in wild carnivores in Israel. METHODS: Spleen and blood clot samples from wild carnivores, which underwent necropsy, were tested for the presence of Borrelia DNA by real-time polymerase chain reaction (PCR). PCR products were sequenced, and the spirochete loads were quantified using a specific quantitative PCR (qPCR). RESULTS: A total of 140 samples from 74 wild carnivores were analyzed for the presence of Borrelia DNA. Six out of the 74 (8.1%) animals were found positive for B. persica by PCR and sequencing of the flagellin B gene, of which 4/74 (5.4%) were also positive by PCR for the glycerophosphodiester phosphodiesterase (glpQ) gene. Positive samples were obtained from three European badgers, and one striped hyena, golden jackal, and red fox each. All B. persica-positive animals were young males (P < 0.0001). Quantifiable results were obtained from 3/5 spleen and 4/5 blood samples. The spirochete loads in the blood were significantly higher than those found in the spleen (P = 0.034). CONCLUSIONS: The prevalence of B. persica infection found in wild carnivores brought for necropsy was unexpectedly high, suggesting that this infection is widespread in some wild animal species in Israel. This is the first report of B. persica infection in the European badger and striped hyena. These carnivores have a wide geographical range of activity, and the results of this survey raise the possibility that they may serve as reservoir hosts for B. persica.


Assuntos
Infecções por Borrelia , Borrelia , Hyaenidae , Mustelidae , Febre Recorrente , Humanos , Masculino , Animais , Israel/epidemiologia , Borrelia/genética , Animais Selvagens , DNA
12.
Emerg Infect Dis ; 29(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37610298

RESUMO

Borrelia miyamotoi, transmitted by Ixodes spp. ticks, was recognized as an agent of hard tick relapsing fever in the United States in 2013. Nine state health departments in the Northeast and Midwest have conducted public health surveillance for this emerging condition by using a shared, working surveillance case definition. During 2013-2019, a total of 300 cases were identified through surveillance; 166 (55%) were classified as confirmed and 134 (45%) as possible. Median age of case-patients was 52 years (range 1-86 years); 52% were male. Most cases (70%) occurred during June-September, with a peak in August. Fever and headache were common symptoms; 28% of case-patients reported recurring fevers, 55% had arthralgia, and 16% had a rash. Thirteen percent of patients were hospitalized, and no deaths were reported. Ongoing surveillance will improve understanding of the incidence and clinical severity of this emerging disease.


Assuntos
Borrelia , Ixodes , Ixodidae , Febre Recorrente , Humanos , Masculino , Estados Unidos/epidemiologia , Animais , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Feminino , Febre Recorrente/diagnóstico , Febre Recorrente/epidemiologia , Borrelia/genética , Febre
13.
Exp Appl Acarol ; 91(1): 99-110, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37584844

RESUMO

Soft ticks from the Ornithodoros genus are vectors of relapsing fever (RF) spirochetes around the world. In Mexico, they were originally described in the 19th century. However, few recent surveillance studies have been conducted in Mexico, and regions where RF spirochetes circulate remain vague. Here, the presence of soft ticks in populated areas was assessed in two sites from the Mexican states of Aguascalientes and Zacatecas. Argasidae ticks were collected, identified by morphology and mitochondrial 16S rDNA gene sequencing, and tested for RF borreliae. The specimens in both sites were identified as Ornithodoros turicata but no RF spirochetes were detected. These findings emphasize the need to update the distribution of these ticks in multiple regions of Mexico and to determine the circulation of RF borreliosis in humans and domestic animals.


Assuntos
Argasidae , Borrelia , Ornithodoros , Febre Recorrente , Humanos , Animais , Febre Recorrente/epidemiologia , Borrelia/genética , Animais Domésticos
14.
Travel Med Infect Dis ; 55: 102630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37567429

RESUMO

Human lice have always been a major public health concern due to their vector capacity for louse-borne infectious diseases, like trench fever, louse-borne relapsing fever, and epidemic fever, which are caused by Bartonella quintana, Borrelia recurrentis, and Rickettsia prowazekii, respectively. Those diseases are currently re-emerging in the regions of poor hygiene, social poverty, or wars with life-threatening consequences. These louse-borne diseases have also caused outbreaks among populations in jails and refugee camps. In addition, antibodies and DNAs to those pathogens have been steadily detected in homeless populations. Importantly, more bacterial pathogens have been detected in human lice, and some have been transmitted by human lice in laboratories. Here, we provide a comprehensive review and update on louse-borne infectious diseases/bacterial pathogens.


Assuntos
Doenças Transmissíveis , Pediculus , Ftirápteros , Febre Recorrente , Tifo Epidêmico Transmitido por Piolhos , Animais , Humanos , Tifo Epidêmico Transmitido por Piolhos/epidemiologia , Tifo Epidêmico Transmitido por Piolhos/microbiologia , Febre Recorrente/epidemiologia , Febre Recorrente/microbiologia , Pediculus/microbiologia , Ftirápteros/microbiologia
16.
MMWR Morb Mortal Wkly Rep ; 72(29): 777-781, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37471261

RESUMO

Soft tick relapsing fever (STRF) (also known as tickborne relapsing fever) is a rare infection caused by certain Borrelia spirochetes and transmitted to humans by soft-bodied Ornithodoros ticks. In the United States, acquisition of STRF is commonly associated with exposure to rustic cabins, camping, and caves. Antibiotic treatment is highly effective for STRF, but without timely treatment, STRF can result in severe complications, including death. No nationally standardized case definition for STRF exists; however, the disease is reportable in 12 states. This report summarizes demographic and clinical information for STRF cases reported during 2012-2021 from states where STRF is reportable. During this period, 251 cases were identified in 11 states. The median annual case count was 24. Most patients with STRF (55%) were hospitalized; no fatalities were reported. The geographic distribution and seasonal pattern of STRF have remained relatively constant since the 1990s. Persons should avoid rodent-infested structures and rodent habitats, such as caves, in areas where STRF is endemic. STRF surveillance, prevention, and control efforts would benefit from a standardized case definition and increased awareness of the disease among the public and clinicians.


Assuntos
Argasidae , Borrelia , Ornithodoros , Febre Recorrente , Animais , Humanos , Estados Unidos/epidemiologia , Febre Recorrente/diagnóstico , Febre Recorrente/tratamento farmacológico , Febre Recorrente/epidemiologia , Antibacterianos/uso terapêutico
17.
J Biol Chem ; 299(8): 104972, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37380082

RESUMO

Borrelial pathogens are vector-borne etiological agents known to cause Lyme disease, relapsing fever, and Borrelia miyamotoi disease. These spirochetes each encode several surface-localized lipoproteins that bind components of the human complement system to evade host immunity. One borrelial lipoprotein, BBK32, protects the Lyme disease spirochete from complement-mediated attack via an alpha helical C-terminal domain that interacts directly with the initiating protease of the classical complement pathway, C1r. In addition, the B. miyamotoi BBK32 orthologs FbpA and FbpB also inhibit C1r, albeit via distinct recognition mechanisms. The C1r-inhibitory activities of a third ortholog termed FbpC, which is found exclusively in relapsing fever-causing spirochetes, remains unknown. Here, we report the crystal structure of the C-terminal domain of Borrelia hermsii FbpC to a limiting resolution of 1.5 Å. We used surface plasmon resonance and assays of complement function to demonstrate that FbpC retains potent BBK32-like anticomplement activities. Based on the structure of FbpC, we hypothesized that conformational dynamics of the complement inhibitory domains of borrelial C1r inhibitors may differ. To test this, we utilized the crystal structures of the C-terminal domains of BBK32, FbpA, FbpB, and FbpC to carry out molecular dynamics simulations, which revealed borrelial C1r inhibitors adopt energetically favored open and closed states defined by two functionally critical regions. Taken together, these results advance our understanding of how protein dynamics contribute to the function of bacterial immune evasion proteins and reveal a surprising plasticity in the structures of borrelial C1r inhibitors.


Assuntos
Proteínas de Bactérias , Borrelia , Proteínas Inativadoras do Complemento 1 , Doença de Lyme , Febre Recorrente , Humanos , Proteínas de Bactérias/química , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Febre Recorrente/imunologia , Febre Recorrente/microbiologia , Proteínas Inativadoras do Complemento 1/química , Domínios Proteicos , Cristalografia por Raios X
18.
Ticks Tick Borne Dis ; 14(4): 102188, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37172512

RESUMO

Borrelia miyamotoi is an emerging human pathogen that causes a relapsing fever-like disease named B. miyamotoi disease. The bacterium belongs to the relapsing fever borreliae, and similar to spirochetes of the Borrelia burgdorferi sensu lato group, it is transmitted only by hard ticks of the Ixodes ricinus complex. To date, B. miyamotoi has not been demonstrated to cause illness in dogs or cats, and is poorly documented in veterinary medicine. The aim of this study was to determine the B. miyamotoi presence in (i) host-seeking ticks and (ii) engorged Ixodes sp. ticks collected from dogs and cats during their inspection in veterinary clinics of the city of Poznan, west-central Poland. Host-seeking ticks were sampled in dog walking areas localized in urban forested recreational sites of the city. In this study, 1,059 host-seeking and 837 engorged I. ricinus ticks collected from 680 tick-infested animals (567 dogs and 113 cats) were screened. Additionally, 31 I. hexagonus ticks (one larva, 13 nymphs, and 17 females) were collected from three cats; one larva and one nymph were collected from two dogs; and one dog was infested with a single Dermacentor reticulatus female. Borrelia DNA was identified by the amplification and sequencing of the V4 hypervariable region of the 16S rRNA gene and flaB gene fragments. DNA of B. miyamotoi was detected in 22 (2.1%) of the host-seeking ticks (in all developmental tick stages and in all study areas). In addition, the engorged I. ricinus ticks exhibited a similar B. miyamotoi presence (1.8%). Fifteen I. ricinus ticks collected from animals tested positive for the presence of B. miyamotoi DNA, and the DNA of B. miyamotoi was observed in three (9.1%; one female and two nymphs) I. hexagonus ticks. The single D. reticulatus female collected from a dog tested PCR-negative for the bacterium. The results of this study demonstrated the establishment and broad presence of the bacterium in tick populations from different urban ecosystems of the city of Poznan. The lack of difference in the mean infection presence of animal-derived and host-seeking I. ricinus ticks suggests that the systematic surveillance of pets may be useful for the evaluation of human exposure to B. miyamotoi infected ticks in urban areas. Additional studies are required to further elucidate the role of domestic and wild carnivores in the epidemiology of B. miyamotoi, which remains unknown.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia , Doenças do Gato , Doenças do Cão , Ixodes , Febre Recorrente , Humanos , Cães , Animais , Gatos , Feminino , Ixodes/microbiologia , Ecossistema , Polônia/epidemiologia , Doenças do Gato/epidemiologia , RNA Ribossômico 16S , Doenças do Cão/epidemiologia , Borrelia/genética , Grupo Borrelia Burgdorferi/genética , Ninfa/microbiologia
20.
Am J Trop Med Hyg ; 108(5): 968-976, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36913922

RESUMO

In endemic malaria areas, Plasmodium is currently diagnosed mainly through the use of rapid diagnostic tests (RDTs). However, in Senegal, many causes of fever remain unknown. Tick-borne relapsing fever, an often-neglected public health problem, is the main cause of consultation for acute febrile illness after malaria and flu in rural areas. Our objective was to test the feasibility of extracting and amplifying DNA fragments by quantitative polymerase chain reaction (qPCR) from malaria-negative RDTs for Plasmodium falciparum (malaria Neg RDTs P.f) to detect Borrelia spp. and other bacteria. Between January and December 2019, malaria Neg RDTs P.f were collected on a quarterly basis in 12 health facilities in four regions of Senegal. The DNA extracted from the malaria Neg RDTs P.f was tested using qPCR and the results were confirmed by standard PCR and sequencing. Only Borrelia crocidurae DNA was detected in 7.22% (159/2,202) of RDTs. The prevalence of B. crocidurae DNA was higher in July (16.47%, 43/261) and August (11.21%, 50/446). The annual prevalence was 9.2% (47/512) and 5.0% (12/241) in Ngayokhem and Nema-Nding, respectively, health facilities in the Fatick region. Our study confirms that B. crocidurae infection is a frequent cause of fever in Senegal, with a high prevalence of cases in health facilities in the regions of Fatick and Kaffrine. Malaria Neg RDTs P.f are potentially a good source of pathogen sampling for the molecular identification of other causes of fever of unknown origin, even in the most remote areas.


Assuntos
Borrelia , Malária Falciparum , Malária , Febre Recorrente , Humanos , Febre Recorrente/diagnóstico , Febre Recorrente/epidemiologia , Febre Recorrente/microbiologia , Senegal/epidemiologia , Testes de Diagnóstico Rápido , Borrelia/genética , Malária/diagnóstico , Malária Falciparum/diagnóstico , Febre , Reação em Cadeia da Polimerase/métodos , Testes Diagnósticos de Rotina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...